Templates

下标池 IdPool template<typename T> struct IdPool { map<T, int> idmap; vector<T> items; void clear() { idmap.clear(); items.clear(); } int getid(const T &t) { auto it = idmap.find(t); if (it != idmap.end()) return it->second; int ans = items.size(); items.push_back(t); idmap[t] = ans; return ans; } T& operator[](int i) { return items[i]; } int size() { return items.size(); } }; IdPool<int> idp;
Title typedef long long LL; typedef vector<int> VI; typedef vector<VI> VVI; const LL INF=0x3f3f3f3f3f3f3f3f; inline LL sqr(LL x){ return x*x; } inline LL dis(const VI &a,const VI &b) { return sqr(a[0]-b[0])+sqr(a[1]-b[1]); } bool cmp(const VI &a, const VI &b) { return a[1]<b[1]; } VVI tmp; LL help(VVI &ps,int l,int r) { int n=r-l+1; if(n<=3) { LL ans=INF; for(int i=l;i<=r;i++) { for(int j=i+1;j<=r;j++) ans=min(ans,dis(ps[i],ps[j])); } sort(ps.begin()+l, ps.begin()+r+1, cmp); return ans; } int m=(l+r)>>1; int mp=ps[m][0]; LL ans=min(help(ps,l,m),help(ps,m+1,r)); int i=l,j=m+1,p=l; while(i<=m || j<=r) { if(i>m || j<=r&&cmp(ps[j],ps[i])) { tmp[p++]=ps[j++]; } else { tmp[p++]=ps[i++]; } } copy(tmp.begin()+l, tmp.begin()+r+1,ps.begin()+l); p=0; for(int i=l;i<=r;i++) { if(sqr(ps[i][0]-mp)
随机数 Random #include <bits/stdc++.h>using namespace std; typedef long long LL; struct FastIO { FastIO() { ios::sync_with_stdio(false); cin.tie(nullptr); } }fastio; mt19937 rnd(chrono::system_clock::now().time_since_epoch().count()); mt19937_64 rnd_64(chrono::system_clock::now().time_since_epoch().count()); // [0,r) int rndi(int r) { return rnd()%r; } // [l,r] r-l+1<=INT_MAX int rndi(int l,int r) { return rnd()%(r-l+1)+l; } LL rndll(LL l,LL r) { return rnd_64()%(r-l+1)+l; } char rndc() { return rndi(-128,127); } char rndc(const string &s) { return s[rndi(s.length())]; } char rnd_lower() { return rndi(26)+'a'; } char rnd_upper() { return rndi(26)+'A'; } char rnd_digit() { return rndi(10)+'0'; } char rnd_alpha() { int r=rndi(52); return r<26?(r+'a'):(r-26+'A'); } char rnd_alphadigit() { int r=rndi(62); if(r<10) return
离散化 Discretization template<typename T, int IdFrom=0, typename OpLs=less<T>, typename OpEq=equal_to<T>> struct Dctz { static OpLs ls; static OpEq eq; vector<T> x; void clear() { x.clear(); } void add(T v) { x.push_back(v); } void init() { sort(x.begin(),x.end(),ls); x.erase(unique(x.begin(),x.end(),eq),x.end()); } int size() { return x.size(); } int id(const T &v) { return lower_bound(x.begin(),x.end(),v,ls)-x.begin()+IdFrom; } T& operator[](int id) { return x[id-IdFrom]; }; }; Dctz<> dc;
扩展欧几里得算法(ExGCD) // ax+by=gcd(a,b)=g // check a>0 b>0 // if a != b, |x|<b, |y|<a template<typename T> void exgcd(T a,T b,T &g,T &x,T &y) { if(!b) { g=a; x=1; y=0; } else { exgcd(b,a%b,g,y,x); y-=a/b*x; } } 求逆元 template<typename T> void exgcd(T a,T b,T &g,T &x,T &y) { if(!b) { g=a; x=1; y=0; } else { exgcd(b,a%b,g,y,x); y-=a/b*x; } } template<typename T> T inv(T a,T m) { T g,x,y; exgcd(a,m,g,x,y); if(g!=1) return -1; // no inverse element if(x<0) x+=m; return x; } 不定方
对拍程序 from os import system tc=0 while True: system("python data.py > data.in") system("std.exe < data.in > std.out") system("my.exe < data.in > my.out") # system("diff std.out my.out > diff.out"): if system("fc std.out my.out > diff.out"): print("WA") break else: tc += 1 print("AC #%d"%tc) print("-------------------- data.in --------------------") # system("cat data.in") system("type data.in") print("-------------------- std.out --------------------") system("type std.out") print("-------------------- my.out ---------------------") system("type my.out") Powershell #include <bits/stdc++.h>using namespace std; int main() { int tc=0; while(1) { system("./E_data > data.in"); system("cat data.in | ./E_std.exe > std.txt"); system("cat data.in | ./E.exe > my.txt"); if(system("diff std.txt my.txt > diff.txt")) { cout<<"WA"<<endl; break; } else
树状数组 Binary Index Tree/Fenwick Tree 1d 单点修改,区间询问 // T must + - // id 1~n template<typename T,size_t M,typename OpPlus=plus<T>,typename OpMinus=minus<T>> struct BIT { static int lowbit(int x) { return x&(-x); } constexpr static OpPlus opp{}; constexpr static OpMinus opm{}; static T tmp[M+1]; T tree[M+1]; // tree[i] -> sum of [i-lowbit(i)+1,i] int n; void init(int n_) { n=n_; for(int i=1;i<=n;i++) tree[i]=T(0); } void init(int n_,T v[]) // v[0 ~ n_-1] { n=n_; tmp[0]=T(0); for(int i=1;i<=n;i++) tmp[i]=opp(tmp[i-1],v[i]); for(int i=1;i<=n;i++) tree[i]=opm(tmp[i],tmp[i-lowbit(i)]); // for(int i=0;i<n;i++) add(i,v[i]); } void add(int p,T V) { for(;p<=n;p+=lowbit(p))
计时 Timing chrono class Timing { private: typedef chrono::time_point<std::chrono::high_resolution_clock> TP; TP current_time() { return chrono::high_resolution_clock::now(); } TP st,ed; public: void start() { st=current_time(); } void end() { ed=current_time(); } void print() { cout<<chrono::duration_cast<chrono::microseconds>(ed-st).count() <<"ms\n"; } }timing;
C++ 日常使用 template <typename A, typename B> string to_string(pair<A, B> p); template <typename A, typename B, typename C> string to_string(tuple<A, B, C> p); template <typename A, typename B, typename C, typename D> string to_string(tuple<A, B, C, D> p); string to_string(const string& s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string) s); } string to_string(bool b) { return (b ? "true" : "false"); } string to_string(vector<bool> v) { string res = "{"; for (int i = 0; i < static_cast<int>(v.size()); i++) { if (i) { res += ", "; } res
C++ 日常使用 #include <bits/stdc++.h>using namespace std; int io_=[](){ ios::sync_with_stdio(false); cin.tie(nullptr); return 0; }(); using LL = long long; using ULL = unsigned long long; using LD = long double; using PII = pair<int, int>; using VI = vector<int>; using MII = map<int, int>; template<typename T> void cmin(T &x,const T &y) { if(y<x) x=y; } template<typename T> void cmax(T &x,const T &y) { if(x<y) x=y; } template<typename T> void cmin(T &x,T &y,const T &z) {// x<=y<=z if(z<x) { y=x; x=z; } else if(z<y) y=z; } template<typename T> void cmax(T &x,T &y,const T &z) {// x>=y>=z if(x<z) { y=x;
安全哈希函数 struct custom_hash { static uint64_t splitmix64(uint64_t x) { // http://xorshift.di.unimi.it/splitmix64.c x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; 用这个函数作为 unordered_set 的第二个参数或 unordered_map 的第三个参数。
模下计算 普通 const int MO=1e9+7; inline int add(int x,int y) { x+=y; if(x>=MO) x-=MO; return x; } inline int sub(int x,int y) { x-=y; if(x<0) x+=MO; return x; } inline int mul(int x,int y) { return 1LL*x*y%MO; } inline void addv(int &x,int y) { x+=y; if(x>=MO) x-=MO; } inline void subv(int &x,int y) { x-=y; if(x<0) x+=MO; } inline void mulv(int &x,int y) { x=1LL*x*y%MO; } int qp(int x,int n) { int ans=1; while(n) { if(n&1) { mulv(ans,x); } mulv(x,x); n>>=1; } return ans; } ModInt template<int MO=1000000007> struct ModInt { int x; ModInt(int x=0):x(x){ norm();
左偏树 Leftist Tree // min leftist tree // T must define < // M: the size of the heap template<typename T,size_t M,typename Cmp=less<T>> struct Leftist { static Cmp cmp; T val[M]; int l[M],r[M],d[M]; int nn; // number of node void init() { nn=0; } // using val to build a leftist tree // return the id of the root int build(int n,T val_[]) { queue<int> qu; for(int i=1;i<=n;i++) qu.push(i); int u,v; while(qu.size()>1) { u=qu.front(); qu.pop(); v=qu.front(); qu.pop(); merge(u,v); qu.push(u); } return qu.front(); } int newtree(T v) { val[++nn]=v; r[nn]=l[nn]=d[nn]=0; return nn; } void merge(int &x,int y) // merge
克鲁斯卡尔 Kruskal template<typename T,size_t V,size_t E> struct Kruskal { typedef tuple<T,int,int> Edge; typedef pair<T,int> PTI; Edge edges[E]; int inmst[E]; int n; // number of vertex int m; // number of edge int uf[V]; int find(int x) { return x==uf[x]?x:uf[x]=find(uf[x]); } void init(int n_) { n=n_; m=0; } void addedge(int u,int v,T w) { edges[m++]={w,u,v}; } PTI solve() { int cnt=n; // number of connected component T sum=0; int u,v; T w; for(int i=0;i<n;i++) uf[i]=i; sort(edges,edges+m); for(int i=0;i<m&&cnt>1;i++) { tie(w,u,v)=edges[i]; u=find(u); v=find(v); if(u==v) continue; inmst[i]=1; sum=sum+w; cnt--; uf[u]=v; } return {sum,cnt==1}; // {totval in mst, ismst} }
弗洛伊德 Floyd // T must define < and + template<typename T,size_t V,bool Directed=true,T INF=T(0x3f3f3f3f)> struct Floyd { T g[V][V]; int n; void init(int n_) { n=n_; for(int i=0;i<n;i++) for(int j=0;j<n;j++) g[i][j]=INF; } void addedge(int u,int v,T w) // check multi-edges { g[u][v]=w; if(!Directed) g[v][u]=w; } void cmin(T &x,const T &y) { if(y<x) x=y; } void floyd(Upd =upd) { for(int k=0;k<n;k++) for(int i=0;i<n;i++) for(int j=0;j<n;j++) cmin(g[i][j],g[i][k]+g[k][j]); } };
并查集 Union Find / Disjoint Set Union 路径压缩和按 size 合并 Union by Size // M: max number of set // id is in [0~M-1] template<size_t M> struct UF { int uf[M],sz[M]; int n; int ns; // number of set void init(int n_) { n=ns=n_; for(int i=0;i<n;i++) uf[i]=i,sz[i]=1; } int find(int x) { return x==uf[x]?x:uf[x]=find(uf[x]); } bool same(int x,int y) { return find(x)==find(y); } bool merge(int x,int y) { x=find(x); y=find(y); if(x==y) return false; if(sz[x]>sz[y]) swap(x,y); sz[y]+=sz[x]; uf[x]=y; ns--; return true; } }; Debug: void show() { cerr<<"UnionFind:----------------------\n"; cerr<<"id:"; for(int i=0;i<n;i++) cerr<<'\t'<<i; cerr<<'\n';
迪杰斯特拉 Dijkstra 模板(priority_queue) // T must define < and + // V: max number of vertex [0~V-1] template<typename T,size_t V,bool Directed=true, T INF=T(0x3f3f3f3f),T ZERO=T(0)> struct G { typedef pair<T,int> PTI; vector<PTI> g[V]; T dis[V]; int vis[V]; int n; void init(int n_) { n=n_; for(int i=0;i<n;i++) g[i].clear(); } void addedge(int u,int v,T w) { g[u].emplace_back(w,v); if(!Directed) g[v].emplace_back(w,u); } void dijkstra(int st,int ed=-1) // ed=-1 no destination { for(int i=0;i<n;i++) dis[i]=INF,vis[i]=0; priority_queue<PTI,vector<PTI>,greater<PTI> > qu; dis[st]=ZERO; qu.emplace(ZERO,st); while(!qu.empty()) { PTI p=qu.top(); qu.pop();
二叉堆 Binary Heap 模板:普通二叉堆 Heap // T must define < // min heap // M: max size of heap template<typename T,size_t M,typename Cmp=less<T>> struct Heap { static Cmp cmp; T h[M+1]; int n; void init() { n=0; } void init(T h_[],int n_) // h[0~n-1] { n=n_; for(int i=1;i<=n;i++) h[i]=h_[i-1]; for(int i=n/2;i;i--) sink(i); // O(n) } void push(T x) { h[++n]=x; swim(n); } T pop() { T res=h[1]; h[1]=h[n--]; sink(1); return res; } T top() { return h[1]; } // check n>=1 int size() { return n; } bool empty() { return